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Bellman’s Curse of Dimensionality

n n-dimensional state space

n Number of states grows exponentially in n (for fixed number of 
discretization levels per coordinate)

n In practice
n Discretization is considered only computationally feasible up to 5 or 6 

dimensional state spaces even when using
n Variable resolution discretization
n Highly optimized implementations

n Function approximation might or might not work, in practice often 
somewhat local



n Optimal Control for Linear Dynamical Systems and Quadratic 
Cost (aka LQ setting, or LQR setting)
n Very special case: can solve continuous state-space optimal control 

problem exactly and only requires performing linear algebra 
operations

n Running time: O(H n3)

Note 1: Great reference [optional] Anderson and Moore, Linear Quadratic Methods

Note2 : Strong similarity with Kalman filtering, which is able to compute the Bayes’ filter updates 
exactly even though in general there are no closed form solutions and numerical solutions scale 
poorly with dimensionality.

This Lecture





Linear Quadratic Regulator (LQR)



Extension to Non-Linear Systems





Value Iteration

n Back-up step for i+1 steps to go:

n LQR:



LQR value iteration: J1



LQR value iteration: J1 (ctd)
n In summary:

n J1(x) is quadratic, just like J0(x).  

à Value iteration update is the same for all times and can be done in closed form for this 
particular continuous state-space system and cost!



n Fact: Guaranteed to converge to the infinite horizon optimal policy if and only if the 
dynamics (A, B) is such that there exists a policy that can drive the state to zero.

n Often most convenient to use the steady-state K for all times.

Value iteration solution to LQR



n Extensions make it more generally applicable:
n Affine systems

n Systems with stochasticity

n Regulation around non-zero fixed point for non-linear systems

n Penalization for change in control inputs

n Linear time varying (LTV) systems

n Trajectory following for non-linear systems

LQR assumptions revisited

= for keeping a linear system at the all-zeros state
while preferring to keep the control input small.



n Optimal control policy remains linear, optimal cost-to-go function remains 
quadratic

n Two avenues to do derivation:

n 1. Re-derive the update, which is very similar to what we did for standard setting

n 2. Re-define the state as:  zt = [xt; 1], then we have:

LQR Ext0: Affine systems



n Exercise: work through similar derivation as we did for the 
deterministic case, but which will now have expectations.

n Result: 

n Same optimal control policy

n Cost-to-go function is almost identical: has one additional term which 
depends on the variance in the noise (and which cannot be influenced 
by the choice of control inputs)

LQR Ext1: stochastic system



Nonlinear system:

We can keep the system at the state x* iff

Linearizing the dynamics around x* gives:

Equivalently:

Let zt = xt – x* , let vt = ut – u*, then:
[=standard LQR]

LQR Ext2: non-linear systems

A B





LQR Ext3: Penalize for Change in Control Inputs
n Standard LQR:

n When run in this format on real systems: often high frequency control inputs get 
generated.  Typically highly undesirable and results in poor control performance.

n Why?

n Solution: frequency shaping of the cost function.  Can be done by augmenting the 
system with a filter and then the filter output can be used in the quadratic cost 
function.  (See, e.g., Anderson and Moore.)  

n Simple special case which works well in practice: penalize for change in control 
inputs. ---- How ??



n Standard LQR:

n How to incorporate the change in controls into the cost/reward function?

n Soln. method A: explicitly incorporate into the state by augmenting the state with the past 
control input vector, and the difference between the last two control input vectors.   

n Soln. method B: change of control input variables.

LQR Ext3: Penalize for Change in Control Inputs



A’ B’x’t+1 x’t= + u’t

[If R’=0, then “equivalent” to standard LQR.]

LQR Ext3: Penalize for Change in Control Inputs
n Standard LQR:

n Introducing change in controls Δu:



LQR Ext4: Linear Time Varying (LTV) Systems



LQR Ext4: Linear Time Varying (LTV) Systems



LQR Ext5: Trajectory Following for Non-Linear Systems

n A state sequence x0*, x1*, …, xH* is a feasible target trajectory if and only if

n Problem statement:

n Transform into linear time varying case (LTV):

At Bt



n Transformed into linear time varying case (LTV):

n Now we can run the standard LQR back-up iterations.

n Resulting policy at i time-steps from the end:

n The target trajectory need not be feasible to apply this technique, however, if it 
is infeasible then there will an offset term in the dynamics:

LQR Ext5: Trajectory Following for Non-Linear Systems



n How about this general optimal control problem?

Most General Case



Iteratively Apply LQR



Iterative LQR in Standard LTV Format

for simplicity and with 
some abuse of notation we 
assumed g(x,u) = g(x) + g(u)



n Need not converge as formulated!

n Reason: the optimal policy for the LQ approximation might end up not 
staying close to the sequence of points around which the LQ 
approximation was computed by Taylor expansion.

n Solution: in each iteration, adjust the cost function so this is the case, 
i.e., use the cost function

Assuming g is bounded, for α close enough to one, the 2nd term will 
dominate and ensure the linearizations are good approximations 
around the solution trajectory found by LQR.
I.e., the extra term acts like a trust region.

Iteratively Apply LQR: Convergence



n f is non-linear, hence this is a non-convex optimization 
problem.  Can get stuck in local optima!  Good initialization 
matters.

n g could be non-convex: Then the LQ approximation can fail to 
have positive-definite cost matrices.
n Practical fix: if Qt or Rt are not positive definite à increase penalty for 

deviating from current state and input (x(i)
t, u(i)

t) until resulting Qt and Rt
are positive definite. 

Iteratively Apply LQR: Practicalities



n Often loosely used to refer to iterative LQR procedure.

n More precisely: Directly perform 2nd order Taylor expansion of the Bellman 
back-up equation [rather than linearizing the dynamics and 2nd order 
approximating the cost]

n Turns out this retains a term in the back-up equation which is discarded in 
the iterative LQR approach

n [It’s a quadratic term in the dynamics model though, so even if cost is 
convex, resulting LQ problem could be non-convex …]

[Reference: Jacobson and Mayne, “Differential dynamic programming,” 1970]

Differential Dynamic Programming (DDP)



Differential Dynamic Programming (DDP)
Let’s consider the case of scale control input u (to keep notation simple)

Ji(xt+1) ⇡Ji(x̄t+1)

+ J 0
i(x̄t+1)(xt+1 � x̄t+1)

+
1

2
J 00
i (x̄t+1)(xt+1 � x̄t+1)

2

⇡Ji(x̄t+1)

+ J 0
i(f(x̄t+1)fu(x, ū)(u� ū)

+
1

2
J 00
i (x̄t+1) (fu(x, ū)(u� ū))2

DDP Iterative LQR

Ji(f(x, u)) ⇡Ji(f(x, ū))

+ J 0
i(f(x, ū))fu(x, ū)(u� ū)

+ J 00
i (f(x, ū))fu(x, ū)fu(x, ū)(u� ū)2

+ J 0
i(f(x, ū))fuu(x, ū)(u� ū)2

xt+1 = f(x, u)

x̄t+1 = f(x, ū)



n Yes!

n At convergence of iLQR and DDP, we end up with linearizations around the 
(state,input) trajectory the algorithm converged to

n In practice: the system could not be on this trajectory due to perturbations / initial 
state being off / dynamics model being off / …

n Solution: at time t when asked to generate control input ut, we could re-solve the 
control problem using iLQR or DDP over the time steps t through H

n Replanning entire trajectory is often impractical à in practice: replan over horizon h.  
= receding horizon control

n This requires providing a cost to go J(t+h) which accounts for all future costs.  This 
could be taken from the offline iLQR or DDP run

Can We Do Even Better?



n In many systems of interest, there is noise entering the system 
which is multiplicative in the control inputs, i.e.:

n Exercise: LQR derivation for this setting

[optional related reading:Todorov and Jordan, nips 2003]

Multiplicative Noise

xt+ 1 = Axt + (B + Bwwt )ut



Cart-pole

[See also Section 3.3 in Tedrake notes.]

H(q)q̈ + C(q, q̇) +G(q) = B(q)u



Cart-pole --- LQR

Q = diag([1;1;1;1]); R = 0;  [x, theta, xdot, thetadot]

Results of running LQR for the linear time-invariant system obtained from linearizing around 
[0;0;0;0]. The cross-marks correspond to initial states.  Green means the controller succeeded 
at stabilizing from that initial state, red means not.



Cart-pole --- LQR

Q = diag([1;1;1;1]); R = 1;  [x, theta, xdot, thetadot]

Results of running LQR for the linear time-invariant system obtained from linearizing around 
[0;0;0;0]. The cross-marks correspond to initial states.  Green means the controller succeeded 
at stabilizing from that initial state, red means not.



n Often control input u is bounded, e.g., inside [-1, +1]

n Can be dealt with simply by redefining dynamics:

n Optimize over v instead of u, and apply tanh(v) when running the policy

n Note: often in addition helpful to penalize for v being too far away from zero, 
to keep optimization well conditioned

Bounded Controls

vt

ut=tanh(vt)



Once we designed a controller, we obtain an autonomous system, xt+1 = f(xt)

Defn. x* is an asymptotically stable equilibrium point for system f if there exists an ε > 0 such 
that for all initial states x s.t. || x – x* || ≤ ε we have that limtè∞ xt = x* 

We will not cover any details, but here is the basic result:

Assume x* is an equilibrium point for f(x), i.e., x* = f(x*).        

If x* is an asymptotically stable equilibrium point for the linearized system, then it is 
asymptotically stable for the non-linear system.  

If x* is unstable for the linear system, it’s unstable for the non-linear system.  

If x* is marginally stable for the linear system, no conclusion can be drawn.

= additional justification for linear control design techniques

Lyapunov’s linearization method
[See, e.g., Slotine and Li, or Boyd lecture notes (pointers available on course website) if you want to find out more.]



n A system is t-time-steps controllable if from any start state, x0, we can reach any target state, 
x*, at time t.  

n For a linear time-invariant systems, we have:

hence the system is t-time-steps controllable if and only if the above linear system of equations 
in u0, …, ut-1 has a solution for all choices of x0 and xt. This is the case if and only if

The Cayley-Hamilton theorem says that for all A, for all t¸ n :  

Hence we obtain that the system (A,B) is controllable for all times t>=n, if and only if

Controllability



Feedback Linearization



Feedback Linearization



Feedback Linearization



Feedback Linearization

[From: Slotine and Li]

_x = f (x) + g(x)u (6.52)

[A funct ion is called a di®eomorphism if it is smooth and its inverse is
smooth.]



Feedback Linearization



Feedback Linearization



Feedback Linearization



Feedback Linearization

àThis condition can be checked by applying the chain rule 
and examining the rank of certain matrices!

à The proof is actually semi-constructive: it constructs a 
set of partial differential equations to which the state 
transformation is the solution.  



n Further readings:

n Slotine and Li, Chapter 6 – example 6.10 shows state-input linearization 
in action

n Isidori, Nonlinear control systems, 1989.

Feedback Linearization



n Embed to Control: A Locally Linear Latent Dynamics Model for Control from Raw Images
Manuel Watter, Jost Tobias Springenberg, Joschka Boedecker, Martin Riedmiller
https://arxiv.org/abs/1506.07365

n Deep Spatial Autoencoders for Visuomotor Learning
Chelsea Finn, Xin Yu Tan, Yan Duan, Trevor Darrell, Sergey Levine, Pieter Abbeel
https://arxiv.org/abs/1509.06113

n SOLAR: Deep Structured Representations for Model-Based Reinforcement Learning
Marvin Zhang, Sharad Vikram, Laura Smith, Pieter Abbeel, Matthew J. Johnson, Sergey Levine
https://arxiv.org/abs/1808.09105

Learning Linear Dynamics Latent Spaces

https://arxiv.org/abs/1506.07365
https://arxiv.org/abs/1509.06113
https://arxiv.org/abs/1808.09105

