
Solving Continuous MDPs with Discretization

Pieter Abbeel
UC Berkeley EECS



[Drawing from Sutton and Barto, Reinforcement Learning: An Introduction, 1998]

Markov Decision Process

Assumption: agent gets to observe the state



Markov Decision Process (S, A, T, R, γ, H)

Given

n S: set of states

n A: set of actions

n T: S x A x S x {0,1,…,H} à [0,1] Tt(s,a,s’) = P(st+1 = s’ | st = s, at =a)

n R:  S x A x S x {0, 1, …, H} à Rt(s,a,s’) = reward for (st+1 = s’, st = s, at =a)

n γ in (0,1]: discount factor  H: horizon over which the agent will act

Goal: 

n Find π*: S x {0, 1, …, H} à A  that maximizes expected sum of rewards, i.e., 

R



Value Iteration
Algorithm:

Start with for all s.

For i = 1, … , H

For all states s in S: 

This is called a value update or Bellman update/back-up

= expected sum of rewards accumulated starting from state s, acting optimally for i steps

= optimal action when in state s and getting to act for i steps



n S = continuous set

n Value iteration becomes impractical as it 
requires to compute, for all states s in S: 

Continuous State Spaces



Markov chain approximation to continuous state space dynamics model 
(“discretization”)

n Original MDP  

(S, A, T, R, γ, H) 

n Grid the state-space: the vertices are the discrete states.

n Reduce the action space to a finite set.
n Sometimes not needed: 

n When Bellman back-up can be computed 
exactly over the continuous action space

n When we know only certain controls are part 
of the optimal policy (e.g., when we know the 
problem has a “bang-bang” optimal solution)

n Transition function: see next few slides.

(S̄, Ā, T̄ , R̄, �, H)

n Discretized MDP



n Discretization

n Lookahead policies

n Examples

n Guarantees

n Connection with function approximation

Outline





Discretization Approach 1: Snap onto nearest vertex

Discrete states: { ξ1 , …, ξ6 }

Similarly define transition 
probabilities for all ξi

ξ6

a

n Discrete MDP just over the states {ξ1, …,ξ6}, which we can solve with value iteration

n If a (state, action) pair can results in infinitely many (or very many) different next states: 
sample the next states from the next-state distribution

0.1

0.3

0.4
0.2

ξ3

ξ5

ξ1

ξ4

ξ2



Discrete states: {ξ1 , …, ξ12 }

n If stochastic dynamics: Repeat procedure to account for all possible transitions and weight accordingly

n Many choices for pA, pB, pC, pD

ξ1

ξ5

ξ9 ξ10 ξ11 ξ12

ξ8

ξ4ξ3ξ2

ξ6 ξ7

s’
a

Discretization Approach 2: Stochastic Transition onto Neighboring Vertices



n One scheme to compute the weights: put in normalized coordinate system [0,1]x[0,1].  

ξ(1,1)ξ(1,0)

ξ(0,0) ξ(1,0)

s’= (x,y) 

0

1

1

Discretization Approach 2: Stochastic Transition onto Neighboring Vertices



Discrete states: {ξ1 , …, ξ12 }

ξ1

ξ5

ξ9 ξ10 ξ11 ξ12

ξ8

ξ4ξ3ξ2

ξ6 ξ7

s’
a

Kuhn Triangulation**



n Allows efficient computation of the vertices participating in a point’s 
barycentric coordinate system and of the convex interpolation weights (aka its 
barycentric coordinates)

n See Munos and Moore, 2001 for further details.

Kuhn Triangulation**



Kuhn triangulation (from Munos and Moore)**



Discretization: Our Status
n Have seen two ways to turn a continuous state-space MDP 

into a discrete state-space MDP

n When we solve the discrete state-space MDP, we find:
n Policy and value function for the discrete states

n They are optimal for the discrete MDP, but typically not for the 
original MDP

n Remaining questions:
n How to act when in a state that is not in the discrete states set?

n How close to optimal are the obtained policy and value function?





n For state s not in discretization set choose action based on policy in nearby states

How to Act (i): No Lookahead

n Nearest Neighbor n Stochastic Interpolation:

Choose ⇡(⇠i) with probability pi

E.g., for s = p2⇠2 + p3⇠3 + p6⇠6,
choose ⇡(⇠2),⇡(⇠3),⇡(⇠6) with
respective probabilities p2, p3, p6

For continuous actions, can also interpolate:



n Forward simulate for 1 step, calculate reward + value function at next state from discrete MDP

n Nearest Neighbor

How to Act (ii): 1-step Lookahead

n Stochastic Interpolation

- if dynamics deterministic no expectation needed
- If dynamics stochastic, can approximate with samples



How to Act (iii): n-step Lookahead

n What action space to maximize over, and how?
n Option 1: Enumerate sequences of discrete actions we ran value iteration

with

n Option 2: Randomly sampled action sequences (“random shooting”)

n Option 3: Run optimization over the actions
n Local gradient descent [see later lectures]
n Cross-entropy method





n CEM = black-box method for (approximately) solving:

with  and 

Note: f need not be differentiable

Intermezzo: Cross-Entropy Method (CEM)



CEM:
sample
for iter i = 1, 2, …

for e = 1, 2, …
sample 
compute 

endfor

Intermezzo: Cross-Entropy Method (CEM)



n sigma and 10% are hyperparameters

n can in principle also fit sigma to top 10%
(or full covariance matrix if low-D)

n How about discrete action spaces?

n Within top 10%, look at frequency of each
discrete action in each time step, and use
that as probability

n Then sample from this distribution

Intermezzo: Cross-Entropy Method (CEM)

Note: there are many variations, including a max-ent variation, which does a 
weighted mean based on exp(f(x))



n Discretization

n Lookahead policies

n Examples

n Guarantees

n Connection with function approximation

Outline



Mountain Car
nearest neighbor
#discrete values per state dimension: 20
#discrete actions: 2 (as in original env)



Mountain Car
nearest neighbor
#discrete values per state dimension: 150
#discrete actions: 2 (as in original env)



Mountain Car
linear
#discrete values per state dimension: 20
#discrete actions: 2 (as in original env)



n Discretization

n Lookahead policies

n Examples

n Guarantees

n Connection with function approximation

Outline



n Typical guarantees:

n Assume: smoothness of cost function, transition model

n For  h à 0, the discretized value function will approach the 
true value function

n To obtain guarantee about resulting policy, combine 
above with a general result about MDP’s:

n One-step lookahead policy based on value function V which is 
close to V* is a policy that attains value close to V*

Discretization Quality Guarantees



n Chow and Tsitsiklis, 1991:
n Show that one discretized back-up is close to one “complete” back-up  + then show sequence 

of back-ups is also close

n Kushner and Dupuis, 2001:
n Show that sample paths in discrete stochastic MDP approach sample paths in continuous 

(deterministic) MDP   [also proofs for stochastic continuous, bit more complex]

n Function approximation based proof (see later slides for what 
is meant with “function approximation”)

n Great descriptions: Gordon, 1995; Tsitsiklis and Van Roy, 1996

Quality of Value Function Obtained from Discrete MDP: 
Proof Techniques



Example result (Chow and Tsitsiklis,1991)**



n Discretization

n Lookahead policies

n Examples

n Guarantees

n Connection with function approximation

Outline



Value Iteration with Function Approximation
Alternative interpretation of the 
discretization methods:

Start with for all s.

For i = 0, 1, … , H-1

for all states          , 
(    is the discrete state set)

with: 

0’th Order Function Approximation

1st Order Function Approximation



n Nearest neighbor discretization:

- builds piecewise constant approximation of value function

n Stochastic transition onto nearest neighbors:

- n-linear function approximation

- Kuhn: piecewise (over “triangles”) linear approximation of value function

Discretization as Function Approximation



n One might want to discretize time in a variable way such that one discrete time transition roughly 
corresponds to a transition into neighboring grid points/regions

n Discounting: 

δt depends on the state and action

See, e.g., Munos and Moore, 2001 for details.

Note: Numerical methods research refers to this connection between time and space as the CFL (Courant 
Friedrichs Levy) condition.  Googling for this term will give you more background info.

!! 1 nearest neighbor tends to be especially sensitive to having the correct match [Indeed, with a 
mismatch between time and space 1 nearest neighbor might end up mapping many states to only 
transition to themselves no matter which action is taken.]

Continuous time**


