
CS287 Fall 2019 – Lecture 2

Markov Decision Processes
and

Exact Solution Methods

Pieter Abbeel
UC Berkeley EECS

n Markov Decision Processes (MDPs)

n Exact Solution Methods

n Value Iteration

n Policy Iteration

n Linear Programming

n Maximum Entropy Formulation

n Entropy

n Max-ent Formulation

n Intermezzo on Constrained Optimization

n Max-Ent Value Iteration

Outline for Today’s Lecture

[Drawing from Sutton and Barto, Reinforcement Learning: An Introduction, 1998]

Markov Decision Process

Assumption: agent gets to observe the state

Markov Decision Process (S, A, T, R, γ, H)
Given:

n S: set of states

n A: set of actions

n T: S x A x S x {0,1,…,H} à [0,1] Tt(s,a,s’) = P(st+1 = s’ | st = s, at =a)

n R: S x A x S x {0, 1, …, H} à Rt(s,a,s’) = reward for (st+1 = s’, st = s, at =a)

n γ in (0,1]: discount factor H: horizon over which the agent will act

Goal:

n Find π*: S x {0, 1, …, H} à A that maximizes expected sum of rewards, i.e.,

R

MDP (S, A, T, R, γ, H), goal:

q Cleaning robot

q Walking robot

q Pole balancing

q Games: tetris, backgammon

Examples

q Server management

q Shortest path problems

q Model for animals, people

Canonical Example: Grid World
§ The agent lives in a grid
§ Walls block the agent’s path
§ The agent’s actions do not

always go as planned:
§ 80% of the time, the action North

takes the agent North
(if there is no wall there)

§ 10% of the time, North takes the
agent West; 10% East

§ If there is a wall in the direction
the agent would have been
taken, the agent stays put

§ Big rewards come at the end

Solving MDPs
n In an MDP, we want to find an optimal policy p*: S x 0:H → A

n A policy p gives an action for each state for each time

n An optimal policy maximizes expected sum of rewards

n Contrast: If environment were deterministic, then would just need an optimal plan, or
sequence of actions, from start to a goal

t=0

t=1
t=2

t=3
t=4

t=5=H

n Markov Decision Processes (MDPs)

n Exact Solution Methods

n Value Iteration

n Policy Iteration

n Linear Programming

n Maximum Entropy Formulation

n Entropy

n Max-ent Formulation

n Intermezzo on Constrained Optimization

n Max-Ent Value Iteration

Outline for Today’s Lecture

For now: discrete
state-action spaces
as they are simpler

to get the main
concepts across.

We will consider
continuous spaces

next lecture!

Value Iteration
Algorithm:

Start with for all s.

For i = 1, … , H

For all states s in S:

This is called a value update or Bellman update/back-up

= expected sum of rewards accumulated starting from state s, acting optimally for i steps

= optimal action when in state s and getting to act for i steps

Value Iteration in Gridworld
noise = 0.2, γ =0.9, two terminal states with R = +1 and -1

Value Iteration in Gridworld
noise = 0.2, γ =0.9, two terminal states with R = +1 and -1

Value Iteration in Gridworld
noise = 0.2, γ =0.9, two terminal states with R = +1 and -1

Value Iteration in Gridworld
noise = 0.2, γ =0.9, two terminal states with R = +1 and -1

Value Iteration in Gridworld
noise = 0.2, γ =0.9, two terminal states with R = +1 and -1

Value Iteration in Gridworld
noise = 0.2, γ =0.9, two terminal states with R = +1 and -1

Value Iteration in Gridworld
noise = 0.2, γ =0.9, two terminal states with R = +1 and -1

§ Now we know how to act for infinite horizon with discounted rewards!
§ Run value iteration till convergence.
§ This produces V*, which in turn tells us how to act, namely following:

§ Note: the infinite horizon optimal policy is stationary, i.e., the optimal action at
a state s is the same action at all times. (Efficient to store!)

Value Iteration Convergence

Theorem. Value iteration converges. At convergence, we have found the
optimal value function V* for the discounted infinite horizon problem, which
satisfies the Bellman equations

n = expected sum of rewards accumulated starting from state s, acting optimally for steps

n = expected sum of rewards accumulated starting from state s, acting optimally for H steps

n Additional reward collected over time steps H+1, H+2, …

goes to zero as H goes to infinity

Hence

For simplicity of notation in the above it was assumed that rewards are always greater than or equal to zero. If rewards can be negative, a
similar argument holds, using max |R| and bounding from both sides.

Convergence: Intuition

V ⇤
H
(s)

1V ⇤(s)

�H+1R(sH+1) + �H+2R(sH+2) + . . . �H+1Rmax + �H+2Rmax + . . . =
�H+1

1� �
Rmax

V ⇤
H

H!1����! V ⇤

Convergence and Contractions
n Definition: max-norm:

n Definition: An update operation is a γ-contraction in max-norm if and only if

for all Ui, Vi:

n Theorem: A contraction converges to a unique fixed point, no matter initialization.

n Fact: the value iteration update is a γ-contraction in max-norm

n Corollary: value iteration converges to a unique fixed point

n Additional fact:
n I.e. once the update is small, it must also be close to converged

(a) Prefer the close exit (+1), risking the cliff (-10)

(b) Prefer the close exit (+1), but avoiding the cliff (-10)

(c) Prefer the distant exit (+10), risking the cliff (-10)

(d) Prefer the distant exit (+10), avoiding the cliff (-10)

Exercise 1: Effect of Discount and Noise

(1) γ = 0.1, noise = 0.5

(2) γ = 0.99, noise = 0

(3) γ = 0.99, noise = 0.5

(4) γ = 0.1, noise = 0

(a) Prefer close exit (+1), risking the cliff (-10) --- (4) γ = 0.1, noise = 0

Exercise 1 Solution

(b) Prefer close exit (+1), avoiding the cliff (-10) --- (1) γ = 0.1, noise = 0.5

Exercise 1 Solution

(c) Prefer distant exit (+1), risking the cliff (-10) --- (2) γ = 0.99, noise = 0

Exercise 1 Solution

(d) Prefer distant exit (+1), avoid the cliff (-10) --- (3) γ = 0.99, noise = 0.5

Exercise 1 Solution

n Markov Decision Processes (MDPs)

n Exact Solution Methods

n Value Iteration

n Policy Iteration

n Linear Programming

n Maximum Entropy Formulation

n Entropy

n Max-ent Formulation

n Intermezzo on Constrained Optimization

n Max-Ent Value Iteration

Outline for Today’s Lecture

For now: discrete
state-action spaces
as they are simpler

to get the main
concepts across.

We will consider
continuous spaces

next lecture!

Policy Evaluation
n Recall value iteration iterates:

n Policy evaluation:

At convergence:

Exercise 2

Policy Iteration

n Repeat until policy converges

n At convergence: optimal policy; and converges faster under some conditions

One iteration of policy iteration:

Policy Evaluation Revisited
n Idea 1: modify Bellman updates

n Idea 2: it is just a linear system, solve with Matlab (or whatever)

variables: Vπ(s)

constants: T, R

Proof sketch:
(1) Guarantee to converge: In every step the policy improves. This means that a given policy can be

encountered at most once. This means that after we have iterated as many times as there are different
policies, i.e., (number actions)(number states), we must be done and hence have converged.

(2) Optimal at convergence: by definition of convergence, at convergence πk+1(s) = πk(s) for all states s. This
means

Hence satisfies the Bellman equation, which means is equal to the optimal value function V*.

Policy Iteration Guarantees

Theorem. Policy iteration is guaranteed to converge and at convergence, the current policy
and its value function are the optimal policy and the optimal value function!

Policy Iteration iterates over:

n Markov Decision Processes (MDPs)

n Exact Solution Methods

n Value Iteration

n Policy Iteration

n Linear Programming

n Maximum Entropy Formulation

n Entropy

n Max-ent Formulation

n Intermezzo on Constrained Optimization

n Max-ent Value Iteration

Outline for Today’s Lecture

For now: discrete
state-action spaces
as they are simpler

to get the main
concepts across.

We will consider
continuous spaces

next lecture!

n What if optimal path becomes blocked? Optimal policy fails.

n Is there any way to solve for a distribution rather than single solution? à more robust

Obstacles Gridworld

What if we could find a “set of solutions”?

n Entropy = measure of uncertainty over random variable X

= number of bits required to encode X (on average)

Entropy

E.g. binary random variable

Entropy

Entropy

n Regular formulation:

n Max-ent formulation:

Maximum Entropy MDP

n But first need intermezzo on constrained optimization…

Max-ent Value Iteration

n Original problem:

n Lagrangian:

n At optimum:

Constrained Optimization

Max-ent for 1-step problem

Max-ent for 1-step problem

= softmax

Max-ent Value Iteration

= 1-step problem (with Q instead of r), so we can directly transcribe solution:

Maxent in Our Obstacles Gridworld (T=1)

Maxent in Our Obstacles Gridworld (T=1e-2)

Maxent in Our Obstacles Gridworld (T=0)

n Markov Decision Processes (MDPs)

n Exact Solution Methods

n Value Iteration

n Policy Iteration

n Linear Programming

n Maximum Entropy Formulation

n Entropy

n Max-ent Formulation

n Intermezzo on Constrained Optimization

n Max-ent Value Iteration

Outline for Today’s Lecture

For now: discrete
state-action spaces
as they are simpler

to get the main
concepts across.

We will consider
continuous spaces

next lecture!

n Recall, at value iteration convergence we have

n LP formulation to find V*:

μ0 is a probability distribution over S, with μ0(s)> 0 for all s in S.

Infinite Horizon Linear Program

Theorem. V* is the solution to the above LP.

Theorem Proof

n How about:

Exercise 3

n Interpretation:

n

n Equation 2: ensures that λ has the above meaning

n Equation 1: maximize expected discounted sum of rewards

n Optimal policy:

Dual Linear Program

n Markov Decision Processes (MDPs)

n Exact Solution Methods

n Value Iteration

n Policy Iteration

n Linear Programming

n Maximum Entropy Formulation

n Entropy

n Max-ent Formulation

n Intermezzo on Constrained Optimization

n Max-ent Value Iteration

Outline for Today’s Lecture

For now: discrete
state-action spaces
as they are simpler

to get the main
concepts across.

We will consider
continuous spaces

next lecture!

n Optimal control: provides general computational approach to tackle control problems.

n Dynamic programming / Value iteration
n Discrete state spaces – Exact methods
n Continuous state spaces – Approximate solutions through discretization
n Large state spaces – Approximate solutions through function approximation
n Linear systems – Closed form exact solution with LQR
n Nonlinear systems – How to extend the exact solutions for linear systems:

n Local linearization
n iLQR, Differential dynamic programming

n Optimal Control through Nonlinear Optimization
n Shooting <> Collocation formulations
n Model Predictive Control (MPC)

n Examples:

Today and Forthcoming Lectures

