CS287 Fall 2019 – Lecture 2

Markov Decision Processes and Exact Solution Methods

Pieter Abbeel UC Berkeley EECS

Outline for Today's Lecture

- Markov Decision Processes (MDPs)
- Exact Solution Methods
 - Value Iteration
 - Policy Iteration
 - Linear Programming
- Maximum Entropy Formulation
 - Entropy
 - Max-ent Formulation
 - Intermezzo on Constrained Optimization
 - Max-Ent Value Iteration

Markov Decision Process

Assumption: agent gets to observe the state

[Drawing from Sutton and Barto, Reinforcement Learning: An Introduction, 1998]

Markov Decision Process (S, A, T, R, γ, H)

Given:

- S: set of states
- A: set of actions
- T: S x A x S x $\{0,1,...,H\} \rightarrow [0,1]$
- R: S x A x S x {0, 1, ..., H} →
- γ in (0,1]: discount factor \mathbb{R}

- $T_t(s,a,s') = P(s_{t+1} = s' | s_t = s, a_t = a)$
- $R_t(s,a,s')$ = reward for $(s_{t+1} = s', s_t = s, a_t = a)$
- H: horizon over which the agent will act

Goal:

Find π^* : S x {0, 1, ..., H} \rightarrow A that maximizes expected sum of rewards, i.e.,

$$\pi^* = \arg \max_{\pi} E[\sum_{t=0}^{H} \gamma^t R_t(S_t, A_t, S_{t+1}) | \pi]$$

Examples

MDP (S, A, T, R, γ , H), goal: $max_{\pi} \mathbb{E}[\sum_{t=0}^{H} \gamma^{t} R(S_{t}, A_{t}, S_{t+1}) | \pi]$

- Cleaning robot
- Walking robot
- Pole balancing
- Games: tetris, backgammon

- Server management
- Shortest path problems
- Model for animals, people

Canonical Example: Grid World

- The agent lives in a grid
- Walls block the agent's path
- The agent's actions do not always go as planned:
 - 80% of the time, the action North takes the agent North (if there is no wall there)
 - 10% of the time, North takes the agent West; 10% East
 - If there is a wall in the direction the agent would have been taken, the agent stays put
- Big rewards come at the end

Solving MDPs

- In an MDP, we want to find an optimal policy π^* : S x 0:H \rightarrow A
 - A policy π gives an action for each state for each time

- An optimal policy maximizes expected sum of rewards
- Contrast: If environment were deterministic, then would just need an optimal plan, or sequence of actions, from start to a goal

Outline for Today's Lecture

- Markov Decision Processes (MDPs)
- Exact Solution Methods
 - Value Iteration
 - Policy Iteration
 - Linear Programming
- Maximum Entropy Formulation
 - Entropy
 - Max-ent Formulation
 - Intermezzo on Constrained Optimization
 - Max-Ent Value Iteration

For now: discrete state-action spaces as they are simpler to get the main concepts across.

We will consider continuous spaces next lecture!

Value Iteration

Algorithm: Start with $V_0^*(s) = 0$ for all s. For i = 1, ... , H For all states s in S: $V_{i+1}^*(s) \leftarrow \max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V_i^*(s') \right]$ $\pi_{i+1}^*(s) \leftarrow \arg\max_{a \in A} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V_i^*(s') \right]$ This is called a value update or Bellman update/back-up

 $V_i^*(s)$ = expected sum of rewards accumulated starting from state s, acting optimally for i steps $\pi_i^*(s)$ = optimal action when in state s and getting to act for i steps

noise = 0.2, γ =0.9, two terminal states with R = +1 and -1

0.00 →	0.00 ≯	0.00 ≯	1.00
0.00 ≯		∢ 0.00	-1.00
0.00 ≯	0.00 ▸	0.00 →	0.00

VALUES AFTER 1 ITERATIONS

noise = 0.2, γ =0.9, two terminal states with R = +1 and -1

0.00 ≯	0.00 ≯	0.72 ▶	1.00
0.00 →		•	-1.00
0.00 →	0.00 ≯	0.00 →	0.00

VALUES AFTER 2 ITERATIONS

noise = 0.2, γ =0.9, two terminal states with R = +1 and -1

0.00 ≯	0.52 →	0.78 ≯	1.00
0.00 →		▲ 0.43	-1.00
0.00 →	0.00 →	•	0.00

VALUES AFTER 3 ITERATIONS

noise = 0.2, γ =0.9, two terminal states with R = +1 and -1

0.37 →	0.66 →	0.83)	1.00
▲ 0.00		• 0.51	-1.00
0.00 →	0.00 →	• 0.31	∢ 0.00

VALUES AFTER 4 ITERATIONS

noise = 0.2, γ =0.9, two terminal states with R = +1 and -1

0.51 →	0.72 →	0.84)	1.00
▲ 0.27		• 0.55	-1.00
• 0.00	0.22 →	• 0.37	∢ 0.13

VALUES AFTER 5 ITERATIONS

noise = 0.2, γ =0.9, two terminal states with R = +1 and -1

0.64 →	0.74 →	0.85)	1.00
^		^	
0.57		0.57	-1.00
			
0.49	∢ 0.43	0.48	∢ 0.28

VALUES AFTER 100 ITERATIONS

noise = 0.2, γ =0.9, two terminal states with R = +1 and -1

0.64 →	0.74 →	0.85)	1.00
▲ 0.57		• 0.57	-1.00
▲ 0.49	∢ 0.43	▲ 0.48	∢ 0.28

VALUES AFTER 1000 ITERATIONS

Value Iteration Convergence

Theorem. Value iteration converges. At convergence, we have found the optimal value function V* for the discounted infinite horizon problem, which satisfies the Bellman equations

$$\forall S \in S: V^*(s) = \max_A \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V^*(s') \right]$$

- Now we know how to act for infinite horizon with discounted rewards!
 - Run value iteration till convergence.
 - This produces V*, which in turn tells us how to act, namely following:

$$\pi^*(s) = \arg \max_{a \in A} \sum_{s'} T(s, a, s') [R(s, a, s') + \gamma V^*(s')]$$

 Note: the infinite horizon optimal policy is stationary, i.e., the optimal action at a state s is the same action at all times. (Efficient to store!)

Convergence: Intuition

- $V^*(s)$ = expected sum of rewards accumulated starting from state s, acting optimally for ∞ steps
- $V_H^*(s)$ = expected sum of rewards accumulated starting from state s, acting optimally for H steps

Additional reward collected over time steps H+1, H+2, ...

$$\gamma^{H+1}R(s_{H+1}) + \gamma^{H+2}R(s_{H+2}) + \ldots \leq \gamma^{H+1}R_{max} + \gamma^{H+2}R_{max} + \ldots = \frac{\gamma^{H+1}}{1-\gamma}R_{max}$$

goes to zero as H goes to infinity

Hence $V_H^* \xrightarrow{H \to \infty} V *$

For simplicity of notation in the above it was assumed that rewards are always greater than or equal to zero. If rewards can be negative, a similar argument holds, using max |R| and bounding from both sides.

Convergence and Contractions

- Definition: max-norm: $||U|| = \max_{s} |U(s)|$
- Definition: An update operation is a γ-contraction in max-norm if and only if

for all U_i , V_i : $||U_{i+1} - V_{i+1}|| \le \gamma ||U_i - V_i||$

- Theorem: A contraction converges to a unique fixed point, no matter initialization.
- **Fact:** the value iteration update is a γ-contraction in max-norm
- Corollary: value iteration converges to a unique fixed point
- Additional fact: $||V_{i+1} V_i|| < \epsilon$, $\Rightarrow ||V_{i+1} V^*|| < 2\epsilon\gamma/(1-\gamma)$
 - I.e. once the update is small, it must also be close to converged

Exercise 1: Effect of Discount and Noise

(a) Prefer the close exit (+1), risking the cliff (-10) (b) Prefer the close exit (+1), but avoiding the cliff (-10) (c) Prefer the distant exit (+10), risking the cliff (-10) (d) Prefer the distant exit (+10), avoiding the cliff (-10)

(1) $\gamma = 0.1$, noise = 0.5

(2) y = 0.99, noise = 0

(3) y = 0.99, noise = 0.5

(4) $\gamma = 0.1$, noise = 0

0.00>	0.00)	0.01	0.01)	0.10
0.00		0.10	0.10)	1.00
0.00		1.00		10.00
0.00>	0.01 >	0.10	0.10 >	1.00
-10.00	-10.00	-10.00	-10.00	-10.00

(a) Prefer close exit (+1), risking the cliff (-10)

(4) γ = 0.1, noise = 0

0.00>	0.00)	0.00	0.00	0.03
•		0.05	0.03)	0.51
0.00		1.00		10.00
0.00	0.00	0.05	0.01	0.51
-10.00	-10.00	-10.00	-10.00	-10.00

(b) Prefer close exit (+1), avoiding the cliff (-10) --- (1) $\gamma = 0.1$, noise = 0.5

9.41 >	9.51)	9.61)	9.70ኑ	9.80
9.32		9.70ኑ	9.80)	9.90
9.41		1.00		10.00
9.51 >	9.61 ▸	9.70ኑ	9.80ኑ	9.90
-10.00	-10.00	-10.00	-10.00	-10.00

(c) Prefer distant exit (+1), risking the cliff (-10) --- (2) γ = 0.99, noise = 0

8.67)	8.93)	9.11)	9.30)	9.42
• 8.49		9.09	9.42)	9.68
8.33		1.00		10.00
7.13	• 5.04	^ 3.15	• 5.68	8.45
-10.00	-10.00	-10.00	-10.00	-10.00

(d) Prefer distant exit (+1), avoid the cliff (-10) --- (3) γ = 0.99, noise = 0.5

Outline for Today's Lecture

- Markov Decision Processes (MDPs)
- Exact Solution Methods
 - 🖌 Value Iteration
 - Policy Iteration
 - Linear Programming
- Maximum Entropy Formulation
 - Entropy
 - Max-ent Formulation
 - Intermezzo on Constrained Optimization
 - Max-Ent Value Iteration

For now: discrete state-action spaces as they are simpler to get the main concepts across.

We will consider continuous spaces next lecture!

Policy Evaluation

Recall value iteration iterates:

$$V_{i+1}^*(s) \leftarrow \max_{a} \sum_{s'} T(s, a, s') [R(s, a, s') + \gamma V_i^*(s')]$$

Policy evaluation:

$$V_{i+1}^{\pi}(s) \leftarrow \sum_{s'} T(s, \pi(s), s') [R(s, \pi(s), s') + \gamma V_i^{\pi}(s')]$$

At convergence:

$$\forall s \ V^{\pi}(s) = \sum_{s'} T(s, \pi(s), s') [R(s, \pi(s), s') + \gamma V^{\pi}(s')]$$

Exercise 2

Consider a stochastic policy $\mu(a|s)$, where $\mu(a|s)$ is the probability of taking action a when in state s. Which of the following is the correct update to perform policy evaluation for this stochastic policy?

1.
$$V_{i+1}^{\mu}(s) \leftarrow \max_{a} \sum_{s'} T(s, a, s') (R(s, a, s') + \gamma V_{i}^{\mu}(s'))$$

2. $V_{i+1}^{\mu}(s) \leftarrow \sum_{s'} \sum_{a} \mu(a|s) T(s, a, s') (R(s, a, s') + \gamma V_{i}^{\mu}(s'))$
3. $V_{i+1}^{\mu}(s) \leftarrow \sum_{a} \mu(a|s) \max_{s'} T(s, a, s') (R(s, a, s') + \gamma V_{i}^{\mu}(s'))$

Policy Iteration

One iteration of policy iteration:

- Policy evaluation: with fixed current policy π, find values with simplified Bellman updates:
 - Iterate until values converge

$$V_{i+1}^{\pi_k}(s) \leftarrow \sum_{s'} T(s, \pi_k(s), s') \left[R(s, \pi_k(s), s') + \gamma V_i^{\pi_k}(s') \right]$$

 Policy improvement: with fixed utilities, find the best action according to one-step look-ahead

$$\pi_{k+1}(s) = \arg\max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V^{\pi_k}(s') \right]$$

- Repeat until policy converges
- At convergence: optimal policy; and converges faster under some conditions

Policy Evaluation Revisited

Idea 1: modify Bellman updates

$$V_0^{\pi}(s) = 0$$

$$V_{i+1}^{\pi}(s) \leftarrow \sum_{s'} T(s, \pi(s), s') [R(s, \pi(s), s') + \gamma V_i^{\pi}(s')]$$

 <u>Idea 2</u>: it is just a linear system, solve with Matlab (or whatever) variables: V^π(s)

constants: T, R

$$\forall s \ V^{\pi}(s) = \sum_{s'} T(s, \pi(s), s') [R(s, \pi(s), s') + \gamma V^{\pi}(s')]$$

Policy Iteration Guarantees

Policy Iteration iterates over:

- Policy evaluation: with fixed current policy π, find values with simplified Bellman updates:
 - Iterate until values converge

$$V_{i+1}^{\pi_k}(s) \leftarrow \sum_{s'} T(s, \pi_k(s), s') \left[R(s, \pi_k(s), s') + \gamma V_i^{\pi_k}(s') \right]$$

 Policy improvement: with fixed utilities, find the best action according to one-step look-ahead

$$\pi_{k+1}(s) = \arg\max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V^{\pi_k}(s') \right]$$

Theorem. Policy iteration is guaranteed to converge and at convergence, the current policy and its value function are the optimal policy and the optimal value function!

Proof sketch:

- (1) Guarantee to converge: In every step the policy improves. This means that a given policy can be encountered at most once. This means that after we have iterated as many times as there are different policies, i.e., (number actions)^(number states), we must be done and hence have converged.
- (2) Optimal at convergence: by definition of convergence, at convergence $\pi_{k+1}(s) = \pi_k(s)$ for all states s. This means $\forall s \ V^{\pi_k}(s) = \max_a \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V_i^{\pi_k}(s') \right]$

Hence V^{π_k} satisfies the Bellman equation, which means V^{π_k} is equal to the optimal value function V*.

Outline for Today's Lecture

- Markov Decision Processes (MDPs)
- Exact Solution Methods
 - 🖌 Value Iteration
 - 🖌 Policy Iteration
 - Linear Programming
- Maximum Entropy Formulation
 - Entropy
 - Max-ent Formulation
 - Intermezzo on Constrained Optimization
 - Max-ent Value Iteration

For now: discrete state-action spaces as they are simpler to get the main concepts across.

We will consider continuous spaces next lecture!

Obstacles Gridworld

- What if optimal path becomes blocked? Optimal policy fails.
- Is there any way to solve for a distribution rather than single solution? \rightarrow more robust

What if we could find a "set of solutions"?

Entropy

Entropy = measure of uncertainty over random variable X

= number of bits required to encode X (on average)

$$\mathcal{H}(X) = \sum_{i} p(x_i) \log_2 \frac{1}{p(x_i)} = -\sum_{i} p(x_i) \log_2 p(x_i)$$

Entropy

E.g. binary random variable

Entropy

- $p(S) = \{0.25, 0.25, 0.25, 0.125, 0.125\}$
 - $H \ = \ 3 \times 0.25 \times \log_2 4 + 2 \times 0.125 \times \log_2 8$
 - = 1.5 + 0.75
 - = 2.25

$$p(s) = \{0.75, 0.0625, 0.0625, 0.0625, 0.0625\}$$

$$H = 0.75 \times \log_2(\frac{4}{3}) + 4 \times 0.0625 \times \log_2 16$$

$$= 0.3 + 1$$

$$= 1.3$$

Maximum Entropy MDP

• Regular formulation:

$$\max_{\pi} E\left[\sum_{t=0}^{H} r_t\right]$$

Max-ent formulation:

$$\max_{\pi} E\left[\sum_{t=0}^{H} r_t + \beta \mathcal{H}(\pi(\cdot \mid s_t))\right]$$

Max-ent Value Iteration

But first need intermezzo on constrained optimization...

Constrained Optimization

• Original problem:

$$\max_{x} \quad f(x)$$

s.t.
$$g(x) = 0$$

\

0 /

Lagrangian:

$$\max_{x} \min_{\lambda} \mathcal{L}(x,\lambda) = f(x) + \lambda g(x)$$

• At optimum:

$$\frac{\partial \mathcal{L}(x,\lambda)}{\partial x} = 0$$

$$\frac{\partial \mathcal{L}(x,\lambda)}{\partial \lambda} = 0$$

Max-ent for 1-step problem

$$\max_{\pi(a)} E[r(a)] + \beta \mathcal{H}(\pi(a))$$

$$\max_{\pi(a)} \sum_{a} \pi(a)r(a) - \beta \sum_{a} \pi(a)\log \pi(a)$$

$$\max_{\pi(a)} \sum_{a} \pi(a)r(a), \lambda) = \sum_{a} \pi(a)r(a) - \beta \sum_{a} \pi(a)\log \pi(a) + \lambda(\sum_{a} \pi(a) - 1)$$

$$\frac{\partial}{\partial \pi(a)} \mathcal{L}(\pi(a), \lambda) = 0$$

$$\frac{\partial}{\partial \pi(a)} \sum_{a} \pi(a)r(a) - \beta \sum_{a} \pi(a)\log \pi(a) + \lambda(\sum_{a} \pi(a) - 1) = 0$$

$$r(a) - \beta \log \pi(a) - \beta + \lambda = 0$$

$$\beta \log \pi(a) = r(a) - \beta + \lambda$$

$$\pi(a) = \exp\left[\frac{1}{\beta}(r(a) - \beta + \lambda)\right]$$

$$\pi(a) = \frac{1}{Z} \exp(\frac{1}{\beta}r(a))$$
 $Z = \sum_{a} \exp(\frac{1}{\beta}r(a))$

Max-ent for 1-step problem

$$\max_{\pi(a)} E[r(a)] + \beta \mathcal{H}(\pi(a))$$
$$\max_{\pi(a)} \sum_{a} \pi(a)r(a) - \beta \sum_{a} \pi(a)\log \pi(a)$$
$$\pi(a) = \frac{1}{Z} \exp(\frac{1}{\beta}r(a)) \qquad Z = \sum_{a} \exp(\frac{1}{\beta}r(a))$$

$$V = \sum_{a} \frac{1}{Z} \exp(\frac{1}{\beta}r(a))r(a) - \beta \sum_{a} \frac{1}{Z} \exp(\frac{1}{\beta}r(a)) \log\left(\frac{1}{Z} \exp(\frac{1}{\beta}r(a))\right)$$

$$= \sum_{a} \frac{1}{Z} \exp(\frac{1}{\beta}r(a)) \left(r(a) - \beta \log\left(\exp(\frac{1}{\beta}r(a))\right)\right) - \beta \sum_{a} \frac{1}{Z} \exp(\frac{1}{\beta}r(a)) \log\frac{1}{Z}$$

$$= 0 - \beta \log\frac{1}{Z} \sum_{a} \frac{1}{Z} \exp(\frac{1}{\beta}r(a))$$

$$= -\beta \log\frac{1}{Z}$$

$$= \beta \log \sum_{a} \exp(\frac{1}{\beta}r(a)) = \text{softmax}$$

Max-ent Value Iteration

$$\max_{\pi} E\left[\sum_{t=0}^{H} r_t + \beta \mathcal{H}(\pi(\cdot \mid s_t))\right] \qquad V_k(s) = \max_{\pi} E\left[\sum_{t=H-k}^{H} r(s_t, a_t) + \beta \mathcal{H}(\pi(a_t \mid s_t))\right]$$

$$V_{k}(s) = \max_{\pi} E \left[r(s, a) + \beta \mathcal{H}(\pi(a|s) + V_{k-1}(s')) \right]$$

=
$$\max_{\pi} E \left[Q_{k}(s, a) + \beta \mathcal{H}(\pi(a|s)) \right]$$
$$Q_{k}(s, a) = E \left[r(s, a) + V_{k-1}(s') \right]$$

= 1-step problem (with Q instead of r), so we can directly transcribe solution:

$$V_k(s) = \beta \log \sum_a \exp(\frac{1}{\beta} Q_k(s, a)) \qquad \qquad \pi_k(a|s) = \frac{1}{Z} \exp(\frac{1}{\beta} Q_k(s, a))$$

Maxent in Our Obstacles Gridworld (T=1)

Maxent in Our Obstacles Gridworld (T=1e-2)

Maxent in Our Obstacles Gridworld (T=0)

Outline for Today's Lecture

- Markov Decision Processes (MDPs)
- Exact Solution Methods
 - 🖌 Value Iteration
 - 🖌 Policy Iteration
 - Linear Programming

Maximum Entropy Formulation

🖌 Entropy

- Max-ent Formulation
- Intermezzo on Constrained Optimization
- Max-ent Value Iteration

For now: discrete state-action spaces as they are simpler to get the main concepts across.

We will consider continuous spaces next lecture!

Infinite Horizon Linear Program

Recall, at value iteration convergence we have

$$\forall s \in S : V^*(s) = \max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V^*(s') \right]$$

LP formulation to find V*:

$$\begin{split} \min_{V} & \sum_{s} \mu_{0}(s) V(s) \\ \text{s.t.} & \forall s \in S, \forall a \in A : \\ & V(s) \geq \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V^{*}(s') \right] \end{split}$$

 μ_0 is a probability distribution over S, with $\mu_0(s) > 0$ for all s in S.

Theorem. V^* is the solution to the above LP.

Theorem Proof

Let F be the Bellman operator, i.e., $V_{i+1}^* = F(V_i)$. Then the LP can be written as:

 $\min_{V} \quad \mu_{0}^{\top} V \\ \text{s.t.} \quad V \ge F(V)$

Monotonicity Property: If $U \ge V$ then $F(U) \ge F(V)$. Hence, if $V \ge F(V)$ then $F(V) \ge F(F(V))$, and by repeated application, $V \ge F(V) \ge F^2 V \ge F^3 V \ge \ldots \ge F^\infty V = V^*$. Any feasible solution to the LP must satisfy $V \ge F(V)$, and hence must satisfy $V \ge V^*$. Hence, assuming all entries in μ_0 are positive, V^* is the optimal solution to the LP.

• How about:

$$\begin{aligned} \max_{V} & \mu_{0}^{\top} V \\ \text{s.t.} & V \leq F(V) \end{aligned}$$

Dual Linear Program

$$\max_{\lambda} \sum_{s \in S} \sum_{a \in A} \sum_{s' \in S} \lambda(s, a) T(s, a, s') R(s, a, s')$$

s.t. $\forall s' \in S : \sum_{a' \in A} \lambda(s', a') = \mu_0(s) + \gamma \sum_{s \in S} \sum_{a \in A} \lambda(s, a) T(s, a, s')$

Interpretation:

$$\lambda(s,a) = \sum_{t=0}^{\infty} \gamma^t P(s_t = s, a_t = a)$$

- Equation 2: ensures that λ has the above meaning
- Equation 1: maximize expected discounted sum of rewards

• Optimal policy: $\pi^*(s) = \arg \max_a \lambda(s, a)$

Outline for Today's Lecture

- Markov Decision Processes (MDPs)
- Exact Solution Methods
 - 🖌 Value Iteration
 - Policy Iteration
 - 🦨 Linear Programming

Maximum Entropy Formulation

🖌 Entropy

- Max-ent Formulation
- Intermezzo on Constrained Optimization
- Max-ent Value Iteration

For now: discrete state-action spaces as they are simpler to get the main concepts across.

We will consider continuous spaces next lecture!

Today and Forthcoming Lectures

- Optimal control: provides general computational approach to tackle control problems.
 - Dynamic programming / Value iteration
 - Discrete state spaces Exact methods
 - Continuous state spaces Approximate solutions through discretization
 - Large state spaces Approximate solutions through function approximation
 - Linear systems Closed form exact solution with LQR
 - Nonlinear systems How to extend the exact solutions for linear systems:
 - Local linearization
 - iLQR, Differential dynamic programming
 - Optimal Control through Nonlinear Optimization
 - Shooting <> Collocation formulations
 - Model Predictive Control (MPC)
 - Examples:

